•業種別効果事例集Vol.1

•自動車業界編①

・ガストース効果事例

お客様でのガストース導入による効果事例 vol.1

【導入目的】

ショート・ウエルド対策

【客先情報】

■ 客先名 : N社 様

■ 主製品 : 車載内装部品

【成形品情報】

■ 成形機 : 75t

■ 金型 : 3プレート

■ 製品 : 車載内装部品

■ 樹脂 :66ナイロン(ガラスなし)

■ 取数 :1/1

【ガストース導入内容】

■ 購入品:PMSA2.0-137.60-0.05 :8本

導入箇所:製品部

【結果】

ガストース使用前

■不良率

- ・ガス焼け不良率 ⇒ 30~40%
- 成形条件(射出圧力)

ガストース使用後

■不良率

- ・ガス焼け不良率 ⇒ **0**%
- 成形条件(射出圧力)
 - ・変更なし

【まとめ】

ガストース使用前は、ショート・ウェルドの不良率が 30~40%あったものが、ガストース使用で0%に なった。

不良率 30~40%

不良率

0%

しかし、今回成形条件は変わらなかった。

低圧・低型締が可能になる方法としては、 ガストースをコールドスラグ部などガスが溜まる箇所 に使用していなかったので、導入することをお客様 へ提案。

お客様でのガストース導入による効果事例 vol2

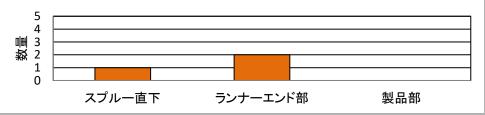
【導入目的】

「ヒケ」、「ウエルド」、「シルバー」対策

【成形品情報】

■ 金型 : 2プレート■ 製品 : 自動車部品

■ 樹脂 : PC+PET ユーピロン MB2112U


8917E(黒)

■ 取数 : 4個取り

【ガストース導入内容】

■ 規格(コード): PMSA5-102.20-0.05 導入箇所 : スプルー部直下 1本

■ 規格(コード): PMSA4-102.20-0.05 導入箇所 : ランナーエンド部 **2**本

【結果】

型締力50%低減 および成形サイクルが 「約63sec」→「約42sec」に短縮が出来た。

※成形条件については別表参照

【まとめ】

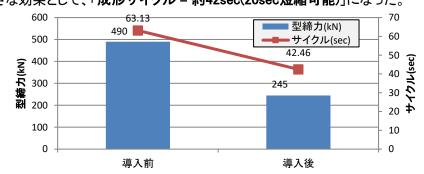
従来の量産成形条件(ガストース)未使用時と異なる箇所

①シリンダー温度設定 : 全体に「-10℃」

②金型温度設定 : 90°C設定 → 80°C設定 ③保圧力 : 113.4MPa → 100.8MPa

④冷却時間 : 45sec → 25sec

過去に「ヒケ」「ウエルド」「シルバー」の問題が多発しており、 結果的に「サイクル = 63sec」で生産を行っていた。


以前の金型では、

スプルーランナー部が異常に「ヒケ」(別紙写真)ており、 「**シリンダ温度 = 高め**」「**保圧 = 高め**」等、サイクル時間を 延長せざるを得ない状態だった。

ガストースを設けることで、金型のエアー逃げが補助され材料の流動性を向上させることが可能となった。

「シリンダ温度 = 低く」「保圧 = 低く」設定でき、金型内から早く製品を取り出すことが可能(冷却時間45sec → 25sec)となった。 更には今まで「冷却時間 = 45sec」でシリンダ内に高温状態で滞留させていた材料によるシルバー不良を、「冷却時間 = 25sec」にすることで、熱履歴の少ない状態での成形が可能となり、シルバー不良を低減させることが可能となった。

大きな効果として、「成形サイクル = 約42sec(20sec短縮可能)」になった。

【成形条件】

条件A(従来条件)

ガストース未使用				
型締カ=490kN				
量産条件(保圧113. 4MPa)				
製品重量 cav. 1	6.91			
製品重量 cav. 2	6.92			
製品重量 cav. 3	6.92			
製品重量 cav. 4	6.91			
スプルー重量	4.54			
1Shot <u>重量</u>	32.20			
サイクル	63.13sec			

条件B

ガストース使用				
型締力=245kN				
(保圧113. 4MPa)				
製品重量 cav. 1	6.92			
製品重量 cav. 2	6.94			
製品重量 cav. 3	6.94			
製品重量 cav. 4	6.90			
スプル一重量	4.47			
1Shot重量	32.17			
サイクル	63.13sec			

・型締力を半減、その他は同一条件 製品部・スプルーランナー部はややバ リっぽくなる。

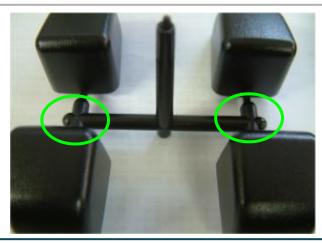
条件C

ガストース使用					
型締力=245kN					
(保圧100.8MPa)					
製品重量 cav. 1	6.91				
製品重量 cav. 2	6.92				
製品重量 cav. 3	6.92				
製品重量 cav. 4	6.90				
スプルー重量	4.47				
1Shot重量	32.12				
サイクル	42.46sec				

・型締力を半減、保圧低く、冷却時間 短、シリンダ温度「-10°C」、金型温 度「-10°C|

★条件Aと同等の製品が得られる。

条件D


ガストース使用				
型締力=245kN				
(保圧88. 2MPa)				
製品重量 cav. 1	6.84			
製品重量 cav. 2	6.88			
製品重量 cav. 3	6.84			
製品重量 cav. 4	6.85			
スプルー重量	4.47			
1Shot重量	31.18			
サイクル	42.46sec			

製品部の「ひけ」がやや気になる。

【条件A】

スプルーランナー部ではあるが、「ヒケ」が強く製品部の 「ヒケ」を押えるために保圧を高く設定しなければならない。 それでも、「ヒケ」が発生している。 金型内で材料と空気が材料と空気がケンカした状態と推測される。

【条件C】

スプルーランナー部の「ヒケ」が改善されている。 ガストースによる流動性のアシストにより、金型内に充分な 圧力が伝達できていると推測されます。

お客様でのガストース導入による効果事例 vol3

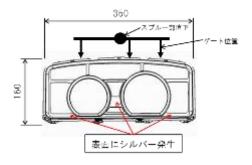
製品部のシルバー低減

製品情報

製品名: 自動車部品(メーターパネル)

成形機 : 230 t

取り数 : 1/1


樹脂 : PP複合材 (タルク入り)

金型構造 : 2プレート

製品サイズ : 350×160×40

製品写真

【製品イメージ】

問題内容

◆ シルバー発生

不良率 2.0~3.0%

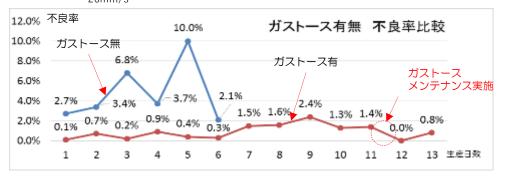
◆ 製品検査

全数検査

導入内容

■ 導入品 : Aタイプ *φ*8 G-0.03

■ 導入筒所 : スプルー直下


導入目的と結果

導入目的

■ スプルー直下に使用し、製品部のシルバー低減

結果

			_			
成形条件		不良率等				
	導入前	導入後		導入前	導入後	
型締力	120 t	40t	シルバー	2.0~3.0%	1.06%	
射出圧	1,700kgf	1,200kgf				_
射出速度	14~ 26mm/s	約5mm/s程遅く				

お客様のコメント

- 全体的に不良を低減出来る様になりました。ガス逃げが足らず 完全にゼロには出来なかった為、再度ガス逃げ検証行います。
- ガストースの洗浄後、不良はまた減少しました。

プラモールから提案

- 1. 通常成形時にもヤニ詰まりの予防をして使用を提案
- 2. ガス発生量に対しまだ、ベントが足りていないようなので、 ガスの集中する箇所にベント追加を提案

