ガストースお客様効果事例 Ⅳ

脂: PP

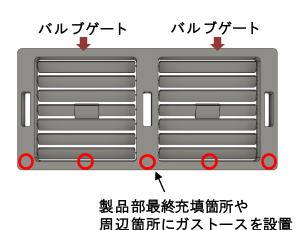
効果あり(A社様)

【導入目的】

ウエルド対策

※イメージ図

【成形品情報】


品: 自動車エアコン部品

成形機: 850t

金型構造:ホットランナー

【ガストース使用筒所】

製品部最終充填箇所 及び周辺箇所 LAタイプ5本

脂: PA

取り数:1

【結果】

	不良率				
ガストース導入前	5%				
ガストース導入後	0%				

【まとめ】

ガストースの導入前は、一日当たりの生産数約1,200個に対し、 ウエルドが約60個発生していた。ガストースを製品部最終充填筒所や 周辺筒所に導入したことにより、ガス、エアーがスムーズに排出され 樹脂の流れも良くなりウエルドが改善された。

効果あり(D社様)

【導入目的】

気泡対策

【成形品情報】

品: 自動車ハーネス部品 取り数:2

成 形 機: 220t

金型構造: サブマリンゲート

【ガストース使用箇所】

スプルー直下に スプルー直下 1本 ガストースを設置 製品部最終充填箇所 4本 製品部最終充填箇列 ガストースを設置

【結果】

	7 th sta	成形条件					
	不良率	射出圧力	型締力				
ガストース導入前	10%	80%	220t				
ガストース導入後	0%	55%	150t				

【まとめ】

ガストースの導入前は、一日当たりの生産数約3,600個に対し、 気泡が約360個発生していた。ガストースを製品部の最終充填箇所に 導入したことにより、エアーの排出が良くなり気泡が発生しなくなった。 更に、成形条件を下げることができ、低圧成形で生産が可能になった。

ガストースお客様効果事例 Ⅳ

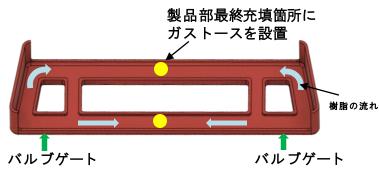
た。 株式 ファモール精工

効果なし(K社様)

【導入目的】

ウエルド対策

※イメージ図


【成形品情報】

品: 自動車外装部品 樹 脂: PP 彡機: 1000t 取 り 数: 1

成 形 機: 1000t 金型構造: ホットランナー

【ガストース使用箇所】

製品部最終充填箇所 2本 LAタイプ スリット幅0.03mm

【結果】

ガストースのスリットに樹脂が詰まってしまった。

【原因】

ガストースのスリット幅(ガス逃げの隙間)を0.03mmで 選定されていたため、ガストースのスリット部へ樹脂が 入り込んでしまい樹脂詰まりが発生してしまった。

【提案】

当社ホームページならびにカタログ冊子に掲載の『ガストース樹脂漏れ試験データ』を基に説明を行い適正のスリット幅0.02mmを提案。

<ガストース 樹脂漏れデータ>※-部抜粋

【樹脂試験条件】

樹脂: PP メーカー: プライムポリプロ グレート: JM108M カラー: NC

【樹脂結果】

樹脂の 樹脂 種類 温度	樹脂	和12日	スリット幅	射出圧(Mpa)												
	型温	(mm)	50	60	70	80	100	110	120	130	140	150	160	180	195	
PP —	200°C	- 40°C	0.02											0	0	0
			0.03	×	×	×										
	040%		0.02		0	0	0	×	×	×						
	240℃		0.03	×	×	×										

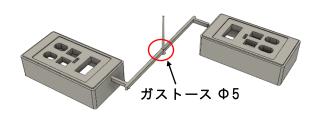
○:樹脂漏れ無し ×:樹脂漏れ有り ■:樹脂漏れが起こる可能性のある条件

効果なし(P社様)

【導入目的】

ウエルド対策

※イメージ図


【成形品情報】

製 品: 情報通信部品 樹 脂: PP 成 形 機: 350t 取 り 数: 2

金型構造: サブマリンゲート

【ガストース使用筒所】

スプル一直下 1本 Φ5使用

【結果】

スプルー直下にガストースΦ5を導入しても効果がみられなかった。

【原因】

製品が大きいためにガストースΦ5の排出する表面積では、 排出効果が薄かった。

【提案】

排出量を高めるため、ガストースのサイズをΦ5からΦ12へ提案。

Φ12に変更することで、スリット部の表面積がΦ5より**『約3倍もアップ』**し、 排出量が高まることを説明。また、スプル一直下で抜けなかったガスや 型内のスプルー、ランナーに溜まっているガス、エアーをランナーエンド からも排出することで更に効果があることを説明し、ランナーエンド専用の ガストースも提案しました。

<ガストースランナーエンド専用タイプ>

) HD

ΗE

ガストースランナーエンド専用タイプはゲート前で排出できるので内圧上昇を防ぐことが出来ます。